Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Adicionar filtros








Intervalo de ano
1.
Chinese Medical Sciences Journal ; (4): 97-108, 2023.
Artigo em Inglês | WPRIM | ID: wpr-981588

RESUMO

Objective To investigate the effects of propofol and sevoflurane on neurological recovery of traumatic brain injury (TBI) patients in the early postoperative stage.Methods We retrospectively analyzed the clinical data of TBI patients who underwent craniotomy or decompressive craniectomy. Generalized additive mixed model (GAMM) was used to analyze effects of propofol and sevoflurane on Glasgow Coma Scale (GCS) on postoperative days 1, 3, and 7. Multivariate regression analysis was used to analyze effects of the two anesthetics on Glasgow Outcome Scale (GOS) at discharge.Results A total of 340 TBI patients were enrolled in this study. There were 110 TBI patients who underwent craniotomy including 75 in the propofol group and 35 in the sevoflurane group, and 134 patients who underwent decompressive craniectomy including 63 in the propofol group and 71 in the sevoflurane group. It showed no significant difference in GCS at admission between the propofol and the sevoflurane groups among craniotomy patients (β = 0.75, 95%CI: -0.55 to 2.05, P = 0.260). However, elevation in GCS from baseline was 1.73 points (95%CI: -2.81 to -0.66, P = 0.002) less in the sevoflurane group than that in the propofol group on postoperative day 1, 2.03 points (95%CI: -3.14 to -0.91, P < 0.001) less on day 3, and 1.31 points (95%CI: -2.43 to -0.19, P = 0.022) less on day 7. The risk of unfavorable GOS (GOS 1, 2, and 3) at discharge was higher in the sevoflurane group (OR = 4.93, 95%CI: 1.05 to 23.03, P = 0.043). No significant difference was observed among two-group decompressive craniectomy patients in GCS and GOS.Conclusions Compared to propofol, sevoflurane was associated with worse neurological recovery during the hospital stay in TBI patients undergoing craniotomy. This difference was not detected in TBI patients undergoing decompressive craniectomy.

2.
Chinese Medical Journal ; (24): 187-198, 2017.
Artigo em Inglês | WPRIM | ID: wpr-303177

RESUMO

<p><b>BACKGROUND</b>In addition to neurons, all components of the neurovascular unit (NVU), such as glial, endothelial, and basal membranes, are destroyed during traumatic brain injury (TBI). Previous studies have shown that excessive stimulation of calpain is crucial for cerebral injury after traumatic insult. The objective of this study was to investigate whether calpain activation participated in NVU disruption and edema formation in a mouse model of controlled cortical impact (CCI).</p><p><b>METHODS</b>One hundred and eight mice were divided into three groups: the sham group, the control group, and the MDL28170 group. MDL28170 (20 mg/kg), an efficient calpain inhibitor, was administered intraperitoneally at 5 min, 3 h, and 6 h after experimental CCI. We then measured neurobehavioral deficits, calpain activity, inflammatory mediator levels, blood-brain barrier (BBB) disruption, and NVU deficits using electron microscopy and histopathological analysis at 6 h and 24 h after CCI.</p><p><b>RESULTS</b>The MDL28170 treatment significantly reduced the extent of both cerebral contusion (MDL28170 vs. vehicle group, 16.90 ± 1.01 mm΃ and 17.20 ± 1.17 mm΃ vs. 9.30 ± 1.05 mm΃ and 9.90 ± 1.17 mm΃, both P < 0.001) and edema (MDL28170 vs. vehicle group, 80.76 ± 1.25% and 82.00 ± 1.84% vs. 82.55 ± 1.32% and 83.64 ± 1.25%, both P < 0.05), improved neurological scores (MDL28170 vs. vehicle group, 7.50 ± 0.45 and 6.33 ± 0.38 vs. 12.33 ± 0.48 and 11.67 ± 0.48, both P < 0.001), and attenuated NVU damage resulting (including tight junction (TJ), basement membrane, BBB, and neuron) from CCI at 6 h and 24 h. Moreover, MDL28170 markedly downregulated nuclear factor-κB-related inflammation (tumor necrosis factor-α [TNF-α]: MDL28170 vs. vehicle group, 1.15 ± 0.07 and 1.62 ± 0.08 vs. 1.59 ± 0.10 and 2.18 ± 0.10, both P < 0.001; inducible nitric oxide synthase: MDL28170 vs. vehicle group, 4.51 ± 0.23 vs. 6.23 ± 0.12, P < 0.001 at 24 h; intracellular adhesion molecule-1: MDL28170 vs. vehicle group, 1.45 ± 0.13 vs. 1.70 ± 0.12, P < 0.01 at 24 h) and lessened both myeloperoxidase activity (MDL28170 vs. vehicle group, 0.016 ± 0.001 and 0.016 ± 0.001 vs. 0.024 ± 0.001 and 0.023 ± 0.001, P < 0.001 and 0.01, respectively) and matrix metalloproteinase-9 (MMP-9) levels (MDL28170 vs. vehicle group, 0.87 ± 0.13 and 1.10 ± 0.10 vs. 1.17 ± 0.13 and 1.25 ± 0.12, P < 0.001 and 0.05, respectively) at 6 h and 24 h after CCI.</p><p><b>CONCLUSIONS</b>These findings demonstrate that MDL28170 can protect the structure of the NVU by inhibiting the inflammatory cascade, reducing the expression of MMP-9, and supporting the integrity of TJ during acute TBI.</p>


Assuntos
Animais , Masculino , Camundongos , Lesões Encefálicas Traumáticas , Tratamento Farmacológico , Metabolismo , Calpaína , Metabolismo , Dipeptídeos , Usos Terapêuticos , Modelos Animais de Doenças , Glicoproteínas , Usos Terapêuticos , Inflamação , Tratamento Farmacológico , Metabolismo , Metaloproteinase 9 da Matriz , Metabolismo , Camundongos Endogâmicos BALB C , NF-kappa B , Metabolismo , Peroxidase , Metabolismo , Fator de Necrose Tumoral alfa , Metabolismo
3.
Chinese Medical Journal ; (24): 909-917, 2013.
Artigo em Inglês | WPRIM | ID: wpr-342275

RESUMO

<p><b>BACKGROUND</b>Various tissue engineering strategies have been developed to facilitate axonal regeneration after spinal cord injury. This study aimed to investigate whether neural stem cells (NSCs) could survive in poly(L-lactic-co-glycolic acid) (PLGA) scaffolds and, when cografted with Schwann cells (SCs), could be induced to differentiate towards neurons which form synaptic connection and eventually facilitate axonal regeneration and myelination and motor function.</p><p><b>METHODS</b>NSCs and SCs which were seeded within the directional PLGA scaffolds were implanted in hemisected adult rat spinal cord. Control rats were similarly injured and implanted of scaffolds with or without NSCs. Survival, migration, differentiation, synaptic formation of NSCs, axonal regeneration and myelination and motor function were analyzed. Student's t test was used to determine differences in surviving percentage of NSCs. One-way analysis of variance (ANOVA) was used to determine the differences in the number of axons myelinated in the scaffolds, the mean latency and amplitude of cortical motor evoked potentials (CMEPs) and Basso, Beattie & Bresnahan locomotor rating scale (BBB) score. The χ(2) test was used to determine the differences in recovery percentage of CMEPs.</p><p><b>RESULTS</b>NSCs survived, but the majority migrated into adjacent host cord and died mostly. Survival rate of NSCs with SCs was higher than that of NSCs without SCs ((1.7831 ± 0.0402)% vs. (1.4911 ± 0.0313)%, P < 0.001). Cografted with SCs, NSCs were induced to differentiate towards neurons and might form synaptic connection. The mean number of myelinated axons in PLGA + NSCs + SCs group was more than that in PLGA + NSCs group and in PLGA group ((110.25 ± 30.46) vs. (18.25 ± 3.30) and (11.25 ± 5.54), P < 0.01). The percentage of CMEPs recovery in PLGA + NSCs + SCs group was higher than in the other groups (84.8% vs. 50.0% and 37.5%, P < 0.05). The amplitude of CMEPs in PLGA + NSCs + SCs group was higher than in the other groups ((1452.63 ± 331.70) µV vs. (428.84 ± 193.01) µV and (117.33 ± 14.40) µV, P < 0.05). Ipsilateral retransection resulted in disappearance again and functional loss of CMEPs for a few days. But contralateral retransection completely damaged the bilateral motor function.</p><p><b>CONCLUSIONS</b>NSCs can survive in PLGA scaffolds, and SCs promote NSCs to survive and differentiate towards neurons in vivo which even might form synaptic connection. The scaffolds seeded with cells facilitate axonal regeneration and myelination and motor function recovery. But regenerating axons have limited contribution to motor function recovery.</p>


Assuntos
Animais , Feminino , Gravidez , Ratos , Axônios , Fisiologia , Células Cultivadas , Eletrofisiologia , Imunofluorescência , Ácido Láctico , Química , Regeneração Nervosa , Fisiologia , Células-Tronco Neurais , Biologia Celular , Ácido Poliglicólico , Química , Ratos Wistar , Células de Schwann , Biologia Celular , Traumatismos da Medula Espinal , Terapêutica , Engenharia Tecidual , Métodos , Alicerces Teciduais , Química
4.
Chinese Medical Journal ; (24): 3515-3520, 2011.
Artigo em Inglês | WPRIM | ID: wpr-336535

RESUMO

<p><b>BACKGROUND</b>Studies have shown that abnormal activation of the sonic hedgehog pathway is closely related to tumorigenesis in central nervous system. This study aimed to investigate the role of the sonic hedgehog signaling pathway in the occurrence of brainstem and supratentorial glioma.</p><p><b>METHODS</b>Real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) and immunohistochemistry were used to detect the expression of sonic hedgehog-related components in 5 specimens of normal brain tissue, 10 of grade II brainstem glioma, and 10 of grade II supratentorial glioma. The significance of differences between two groups was determined using the Mann-Whitney U test or the two-sample test according to the results of normality distribution tests.</p><p><b>RESULTS</b>The mRNA expression levels of sonic hedgehog-related genes were higher in brainstem astrocytomas than in supratentorial astrocytomas and normal brain tissue. The level of protein patched homolog 1 (PTCH1) was significantly higher in brainstem astrocytomas than in supratentorial astrocytomas and normal brain tissue (P < 0.01). Immunohistochemistry semi-quantitative analysis was consistent with the qRT-PCR result that PTCH1 expression was increased significantly in brainstem astrocytomas at the protein level (P < 0.05).</p><p><b>CONCLUSIONS</b>Enhanced PTCH1 expression and activation of the sonic hedgehog pathway are involved in brainstem glioma. This may be related to the difference in malignant biological behavior between brainstem and hemispheric glioma, and could be an ideal therapeutic target in brainstem glioma.</p>


Assuntos
Adolescente , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem , Astrocitoma , Genética , Metabolismo , Neoplasias do Tronco Encefálico , Genética , Metabolismo , Glioma , Genética , Metabolismo , Proteínas Hedgehog , Genética , Metabolismo , Imuno-Histoquímica , Receptores Patched , Receptor Patched-1 , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Superfície Celular , Genética , Metabolismo , Transdução de Sinais , Genética , Fisiologia , Neoplasias Supratentoriais , Genética , Metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA